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Abstract

Agriculture is the most important land use in Europe in geographic terms and because of this it plays a central role in the
quality of the wider environment. Whilst the spatial patterns of agricultural land use have changed considerably in recent times,
further changes are likely as a result of the influences of policy reform, socio-economics and climate change. Understanding,
therefore, how agricultural land use might respond to global environmental change drivers is a research question of considerable
importance. The first step, however, in projecting potential future changes in agricultural land use is to be able to understand
and represent in models both the socio-economic and physical processes that control current land use distributions.

Thus, this paper presents an approach to modelling the spatial distribution of agricultural land use at the regional scale. The
approach is based on the simulation of farm-scale decision making processes (based on optimisation) and the response of crops
to their physical environment. Regional scale applications of the model are undertaken through the use of spatially-variable,
geographic data sets (soils, climate and topography) combined with economic data. Examples of the application of the model are
given for two regions of England: the north-west and east Anglia. These regions were selected to give examples of contrasting
land use systems within the context of northern European agriculture. The model results are compared statistically with
observed distributions of agricultural land use for the same regions in a quasi-validation exercise. The comparison suggests that
the model is very good at representing land use that is aggregated at the regional level, and at representing general spatial trends
in land use patterns. Some differences were observed, however, in land use densities between the modelled and observed data.

The results suggest that the basic hypothesis of the model: that farmers are risk averse, profit maximisers, is a reasonable
assumption for the regions studied. However, further study of decision making processes would be likely to improve our
ability to model agricultural land use distributions. This includes, for example, the role of farmer attitudes to risk, differing
views on future prices and profitability, and the effect of time lags in the decision process.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In spatial terms, agriculture is one of the most
important land uses in Europe. For example, the
CORINE land cover map classifies about 53% of
the European land surface as agriculture. The man-
agement of this land has profound impacts on the
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quality of the wider environment through, for exam-
ple, nutrient dynamics, water resources and biologi-
cal diversity. European landscapes have experienced
rapid changes in agricultural land use throughout the
second half of the twentieth century arising from
developments in technology and management driven
by socio-economic and political forces. These trends
are anticipated to continue into the future through the
effect of reforms to the Common Agricultural Policy
(CAP), enlargement of the European Union, globali-
sation, technological change and climate change.

Scientific interest in the issue of land use change
has been stimulated internationally by the Land Use
and Cover Change initiative created by the Inter-
national Geosphere Biosphere Programme (IGBP)
and the International Human Dimensions Programme
(IHDP). LUCC has produced a science/research plan
(Turner et al., 1995), which provides a framework
for the development of LUCC research in the future,
world-wide. The science/research plan implies that
the study of LUCC requires a multi-disciplinary per-
spective and methodologies that approach the problem
from a non-traditional viewpoint. For example, inte-
grating understanding of both the socio-economic and
biophysical drivers of change is an important research
objective for LUCC, and how this can be achieved in
contrasting environments remains a research problem
of considerable importance (Riebsame et al., 1994).
The development and implementation of integrated
models is central to LUCC research because mod-
els provide an opportunity to improve understanding
of the processes and process interactions (feedback)
within complex systems (e.g. seeLambin et al.,
2000). Models can be used to evaluate the sensitivity
of land use systems to different drivers of change,
and identify which drivers and processes are most
important. However, to effectively address land use
change processes, models need to operate explicitly
within space at different spatial and temporal scales.
This requires the use of appropriate GIS technology,
as an interface between models and spatial data, but
also raises technical problems in the ‘spatialisation’
of models that future research needs to address (e.g.
Wassenaar et al., 1999).

Agricultural land use decisions are made by farm-
ers managing farms. In other words farm level deci-
sions mediate the impact of market and policy change
on land use. Thus, any attempt to assess agricul-

tural land use change needs to explicitly incorporate
descriptions of the goals and constraints that affect
farmers and their management strategies. In terms of
the development of models of agricultural land use
change, this suggests an approach focused on deci-
sions made at the farm level. It is also important to
recognise, however, that whilst farmers are operating
within a broadly similar economic environment (at
the regional scale), but subject to their own prefer-
ences opinions and experiences, they are faced with
considerable differences in the physical characteris-
tics of the landscape, such as soil types and climates.
This creates large observed differences in land use
decisions, and so extrapolation of farm scale models
to wider geographical regions must account for the
spatial heterogeneity of the physical environment.
The physical environment affects not only the poten-
tial productivity of land (i.e. crop yields), but also
the constraints arising from soil tillage opportunities
(Rounsevell and Jones, 1993) and pests and diseases.

This paper describes the development and imple-
mentation of a model of agricultural land use at the
regional scale. The approach is based on the integra-
tion of a farm level optimisation model with spatial
data sets of the biophysical environment (soils and cli-
mate). The model is demonstrated in two contrasting
regions of England, east Anglia and the north-west of
England (seeFig. 1), by a comparison of the model
outputs against current, observed land use. In this way,
we have sought to test the hypothesis that the key
determinant of regional agricultural land use within
the study region is ‘profit maximisation’. Whilst the
model has been tested against current land use data,
its potential long-term value is the study of land use
change arising from biophysical or policy trends ex-
trapolated to the future. The paper describes the farm
scale model and physical data sets used in the analy-
sis, as well as explaining the methods used to integrate
the model and data, and the statistical analyses used
in the quasi-validation of the model results.

2. Theory

2.1. The approach

The approach presented here was based on two core
models. The SFARMOD whole farm model is used
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Fig. 1. The two study regions: north-west England and east Anglia.

to simulate farm decisions using an optimisation ap-
proach (Audsley, 1993). The ACCESS crop growth
model (Mayr et al., 1996) is used to simulate the re-
sponse of different crops to the biophysical environ-
ment (soils and climate). The relationships between
these models are shown inFig. 2, and the models
themselves are described in more detail later.

2.2. Description of the farm level model

The underlying hypothesis of the farm scale mod-
elling approach is that farmers are ‘profit maximisers’.

The main differences in the outcomes, in other words
the actual crops grown, by different farmers is due
to the soil type, climate and scale of operation. The
whole farm model was previously developed for in-
dividual farms to determine the profit maximising
labour, machinery and cropping (Audsley, 1993).
In the application reported here, representative in-
dividual farms were created for a region in which
soil type is determined by spatial location, and crop
yield and soil workability are determined by the
crop growth model, as a function of the soil and
climate.
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Fig. 2. Schematic of the agricultural sector model, incorporating ACCESS and SFARMOD.

The whole farm model can be viewed as a core
optimisation model around which there are a number
of mechanisms for providing the necessary data. The
model selects the optimum steady-state farm system
according to a series of constraints with an objective
that is a weighted sum of the profit and a measure
of risk. Data is provided either directly as a value, or
indirectly as a formula. A formula expresses the value
as a function of data such as soil type, crop yield,
machine size, nitrogen applied, etc. A formula or data
item can be technical, the work rate is a function of
the tractor power and soil type, or derived from other
models such as the nitrate leaching being a function of
the soil type and the nitrogen not taken off in the crop.

Workable hours are an important part of the model,
and these are operation specific. For example, there
are fewer workable hours for spraying than for cereal
harvesting and still fewer hours than for ploughing.
The year is divided into periods of 2 weeks and a
sub-model calculates an expected number of available
workable hours in the seventh year in 10, based on the

soil type and average annual rainfall. This approach
has been found to be suitable for annual farm planning
(Audsley, 1981). A heavy soil is never workable in
the winter whereas a light soil is workable most of the
winter.

A major feature of the model is the constraints
arising from timeliness and rotational penalties.Time-
liness penaltiesreduce the yield of a crop if, for ex-
ample, it is planted late. However, because in general
it would be far too expensive to plant all the crops at
exactly the right time, there is an optimum (minimum)
level of timeliness penalty. This level is different for
different farms depending on the other crops chosen
and workable hours. The model determines a work
schedule, which gives the optimum amount of each
operation planned for each time period.Rotational
penaltiesare the reduction in yield of one crop follow-
ing another, for example wheat after wheat relative
to wheat after oilseed rape, due to pest and disease
incidence. A database of rotational penalties has been
constructed for all the possible crop sequences and
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the model determines the optimum rotation from this
database, including the influence of the consequent
effects on timeliness, labour and machinery.

The model has been designed to examine the effect
of changes on a farm such as crop gross margins,
new crops, machinery or techniques. A mathematical
description of the model follows.The area of operation
j on crop i in period k is denotedxijk. The area of
crop i is ai . The objective is to find the values of these
variables that maximise the steady state profitz and
the corresponding resourcesnm, the number of men
and machines,m:

z =
∑

Giai −
∑

Cijkxijk − Cmnm (1)

where Gi is the basic gross margin of cropi, Cijk

the cost of the operation, including any adjustment to
the gross margin such as the reduction in yield due to
carrying out the operation late,Cm the annual cost of
resourcem and,

ai =
∑

k

xi1k (2)

The resource constraints are:∑
i,j

Rijkmxijk ≤ Hmknnm ∀m, k, n ≤ N (3)

where,Rijkm is the amount of resourcem of type N
required to carry outxijk, Hmkn the amount of resource
m of typen available in periodk.

Types are successively more restrictive workable
hours such as for ploughing, harvesting (must be dry),
spraying (must be dry and not windy) which are as-
sumed to be sub-sets. Thus, the hours when spraying
is possible are also the hours when harvesting is pos-
sible, but not vice-versa.

Sequencing constraints ensure that a sequential op-
eration is not carried out before its preceding opera-
tion.∑
k≤K

xijk ≤
∑
k≤K

xi(j−1)k ∀ i, j > 1, k (4)

whereK ∈ (Pij ∩ Pij−1), Pij is the set of periods in
which operationj on cropi can be carried out. If the
intersectionK is null, the constraint is simply the sum
over all periods.

For non-sequential operations,

ai =
∑

k

xijk (5)

Whenj = 1, the above sequence constraints refer to
the previous crops in the rotation. Definerick to be the
area of cropi following cropc in periodk.
∑

i

rick = xcJk,
∑
k≤K

xi1k ≤
∑

c

rick (6)

Each crop is a member of a disease class,Pd , which
affects the rotation possibilities. There is a loss of
yield penalties (from zero to ‘not allowed’) for crops
following particular disease class crops. The annual
build up of a disease is offset by the growth of crops
not encouraging that disease. The build-up valueBd

is the minimum number of years between crops of
that disease class. There may also be an associated
disease class, which does not provide a break from
the build-up of the disease. It is assumed that for
an associated disease,d ′ the build-up value is the
smaller ofBd or Bd ′ . Then the constraint for disease
d is:
∑

i∈P d

aiBd+
∑

i∈P d′
aimin[Bd, Bd ′ ] −

∑

i /∈P d∪P d′
ai ≤ 0 ∀ d

(7)

Rotational penalties are also subtracted from the ob-
jective (Eq. (1)).

In simple terms, the sum of the crops must be less
than the land available. However this constraint must
take into account the possibilities of more than one
crop per year and more than 1 year per crop. Thus,
the area of land occupied by a crop or between crops,
at any time, must be less than or equal to the area
of land available for crops. Crops include permanent
crops such as grazing, perennial crops such as forage,
annual crops such as wheat, rape and set-aside, and
catch crops.

Let tic be the total area of land transferring from
crop i to crop c. Define the start of transfer be the
first period of the last operation of cropi and the end
of transfer be the last period of the first operation of
crop c. Note that land must either be in crop or be-
ing transferred; there is no overlap. At any particular
period of the year, one can calculate the land use as
the sum of crops and transfers between crops. An ar-
bitrary, but useful, period is the year-end. LetNi be
the number of year ends an annual, perennial or catch
cropi crosses,P be the set of permanent crops and�ic

have value one if the transfer from cropi to c crosses
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Table 1
Simple numerical example of a farm model

a (crop) x (crop) (operation) (period) r (from) (to) (per) n (machine)

a1 a2 x111 x112 x113 x122 x123 x134 x211 x225 r114 r124 r215 n1 n2

Objective—Eq. (1)
(E1) 982 1526 −12 −12 −12 −14 −54 −13 −12 −17 −150 0 0 −18000 −4152

Area of crop (crop)—Eq. (2)
(E2)1 −1 1 1 1 =0
(E2)2 −1 1 =0

Total area of land—Eq. (8)
(E8) 1 1 =200

Machine hours (machine) (period) (type)—Eq. (3)
(E3)111 0.5 1.5 −68 ≤0
(E3)121 0.5 0.8 −122 ≤0
(E3)122 0.8 −95 ≤0
(E3)131 0.5 0.8 −134 ≤0
(E3)132 0.8 −105 ≤0
(E3)141 1.6 −142 ≤0
(E3)151 3.2 −106 ≤0
(E3)241 0.8 −142 ≤0
(E3)251 1.6 −106 ≤0

Sequencing (crop) (operation) (version)—Eq. (4)
(E4)111 1 1 1 −1 −1 ≤0
(E4)121 −1 −1 −1 1 1 ≤0
(E4)122 −1 −1 1 1 ≤0
(E4)123 −1 1 ≤0
(E4)131 −1 −1 1 ≤0
(E4)211 1 −1 ≤0
(E4)221 −1 1 ≤0

Rotational sequencing (crop) (period)—Eq. (6)
(E6)14 −1 1 1 ≤0
(E6)25 −1 1 ≤0

Rotational constraint (disease)—Eq. (7)
(E7)1 −2 1 ≤0

(En) refers to equation n in the text. The example has two crops (hence the subscripti takes two values 1 and 2), one with three operations (j = 1, 2, 3) and the other with
two (j = 1, 2). There are five time periods considered (k = 1, . . . , 5). The first and second operations of the crop 1 overlap (Eq. (4)). The second operation requires better
workability ((E3)122) and there is a penalty if it is carried out in period 3 (x1231 and (E1)). There are two machines (n1 and n2), one used for all operations (cf a tractor)
and the other used only for the final operation on each crop (cf a harvester). Crop 1 can follow itself (penalty 150), but crop 2 can only follow crop 1 (the rcolumns). Crop
2 is limited to 1 year in 3.
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the year end, otherwise zero. ThenEq. (8)defines the
land use.∑
i∈P

ai +
∑
i /∈P

Niai +
∑

ic

�ictic ≤ T (8)

Additional constraints can be added to represent fea-
tures such as sugar beet quotas, which limit the amount
of the operation that can be carried out in any period.
Modifications can allow alternative methods of carry-
ing out operations, such as different sizes of tractor or
contractors. This is a linear programme, which can be
rapidly solved on modern computers.

Table 1shows a small numerical example.

3. The database

The whole farm model has a comprehensive data-
base, which covers a wide range of common crops.
The database consists of two main levels: a level of
general farm data and an operational level.

3.1. Farm level input data

The location of a farm has a big influence on its
performance and profitability. Environmental factors,
such as soil texture and climate influence crop yield,
the soil workability (Rounsevell and Jones, 1993;
Rounsevell and Brignall, 1994), the risk of diseases
and the fertiliser requirement. In the farm model,
nine soil textures are defined, varying from light soil
(sandy) to heavy clay. The climate is described by
Annual Average Rainfall (AAR). High rainfall means
the soil returns to field capacity earlier in the autumn,
after which work is rarely possible, which results in
fewer workable days during the year. A heavy soil is
never workable in the winter whereas a light soil is
workable most of the winter. Thus, these two parame-
ters have a strong influence on the scheduling of farm
operations. For each 2 weekly period a certain num-
ber of hours are available to work the land, defined
by soil moisture, temperature, daylight and available
labour hours.

3.2. Operation level input data

For every crop, input data specify crop parameters,
such as yield, fertiliser rates, and information about the

Table 2
Summary of operational input variables for the farm model

Variables

Crop Gross margin: yield (primary and secondary),
prices, seed rate, fertiliser rates, sprays and costs
Husbandry operations: list of operations and
their feasible timing e.g. plough, cultivate, drill,
spray, fertilise, harvest, bale
Timeliness penalties: extra cost or loss of yield of
doing operation at other than the optimal timing
Rotational penalties: reduction in yield from one
crop following another, including impossible

Operations Work rate as a function of size of machinery
and amount of e.g. yield or fertiliser or soil type
Workable hours as a function of soil type,
rainfall, time of the year and labour availability
Machinery needed (i.e. size, power)

Machinery
and labour

Cost: capital, repairs, fuel, resale value
Replacement interval

required operations that have to be performed to grow
the crop. In addition, available machinery and labour
capacity are important features for the calculation of
the crop distribution over the available arable area,
optimised over farm profit. A list of the model-input
variables, on the operational level is given inTable 2.

4. Running the model over regions

The whole farm model was initially developed to
calculate the optimal cropping for one farm. However,
an approach has been developed to apply the model
on a regional basis using gridded soil and climate data
at a resolution of 5 km× 5 km (although finer reso-
lutions would also be possible). The basis of the ap-
proach is the assumption that a generic, model farm
is representative of the sum of the farms within each
grid cell. The cropping can then be estimated for each
generic farm/grid, and these values mapped to show
spatial distributions of land use or aggregated to larger
spatial units (e.g. administrative regions) if required.

On an individual farm a farmer would select a
sub-set of the large number of possible crops. Over
a region however the average individual farm can
include a small percentage of a crop. Thus, when
calculating the distribution of crops over a grid, it
is important to take all the crops into account. For
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one farm it might not be profitable to allocate 2%
of the land to a certain crop, but over larger regions
this area could be relevant. However, many crops are
grown in very small areas for very specific customers.
Thus, the following major arable crops and grass
were considered: wheat, winter barley, spring barley,
spring oats, winter oilseed rape, spring oilseed rape,
linseed, winter beans, spring beans, dried peas, pota-
toes, potatoes (100 mm irrigation), potatoes (200 mm
irrigation), sugar beet, sugar beet (100 mm irrigation),
sugar beet (200 mm irrigation), maize, sunflower,
soybean, grass, permanent grass and forage maize.

Sugar beet is a special case in a regional study as its
profitability is partly determined by the existence of
a local factory. To examine the full range of possible
futures, this restriction was removed to determine the
level of need for a factory.

The following, spatially-variable inputs are required
by the model:

• soil textural types;
• primary yield;
• workable hours as a function of soil texture and

climate.

4.1. Soil textural types

The soils data were based on the range of soil series
that occur within each 5 km× 5 km grid square of the
rasterised National Soil Map of England and Wales
at a scale of 1:250,000 (Avery, 1980). These data are
held within the Land Information System (LIS) of the
Soil Survey and Land Research Centre, Cranfield Uni-
versity. In a single 5 km× 5 km grid square, several
soil-types can occur, and the model was run for each
of these types.

4.2. Primary yield

Primary crop yields are influenced by the location
of the grid for several reasons including the soil type
and climate. Spatial crop yield data do not exist within
England at the resolution required by the model. It
is necessary, therefore, to model the spatial variabil-
ity of crop yields. This was undertaken using an ex-
isting crop growth simulation model named ACCESS
(Mayr et al., 1996; Wassenaar et al., 1999, etc.). The
model was applied to the soils and climate data within

each 5 km×5 km grid square and these outputs scaled
according to a comparison of the model results with
available crop yield values (for specific sites). In this
way, the crop model provided a representation of the
spatial heterogeneity of crop yields, but the yield val-
ues were referenced to real observations. Crop mod-
els are an important part of the approach presented
here because they allow responses to climate change
(e.g. arising from temperature, precipitation and atmo-
spheric CO2 changes) to be assessed.

The crop model simulates the soil moisture content,
the soil nitrogen content, the temperature and the ra-
diation, as the level of each affects the crop’s growth.
Thirty years were simulated for all of the soil types
occurring within each 5 km× 5 km grid square. The
model outputs comprised:

• the crop dry matter yield each year;
• the crop maturity date—if at the end of the year the

crop has not matured, there is no crop yield;
• the nitrogen used on the crop;
• the water used on the crop, which is applied as

required up to the maximum specified—if there is
insufficient need for water it is not used;

• the daily water draining from or running off the soil;
• the nitrate-N content of the soil each day.

4.3. Workable hours

The workable hours for each 5 km×5 km grid were
estimated from the soil texture and climate using the
simulated soil moisture content for 30 years. The re-
sults were calibrated by comparing the estimates with
an ADAS survey of workable days, the estimates in
Nix (1999)andABC (1999). The hours in the seventh
best year in 10 were then calculated.

4.4. Other spatially variable inputs to
the farm level model

The rotational penalties influence the primary yield,
but the penalties themselves were considered to stay
constant over all of the grids. The inputs for fertiliser
and irrigation were also considered constant.

A grid has a surface of 5 km× 5 km, or 2500 ha.
The area of a grid, therefore, is larger than the area
of a single farm. The cropping solution on the rep-
resentative farm is assumed to estimate the aggregate
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cropping of the farms in the grid. As the whole surface
of the grid is not available for arable crops, because a
certain amount is used for housing, some area can be
water, etc. the total area available to agriculture was
corrected as follows:

Available area grid

= 2500×




100%− urban %− woodland %
−sea %− lake %

100




In addition some grids have no soil type recorded
and are assumed to be non-agricultural, some areas are
at best marginal for all crops and are also assumed to
be non-agricultural, though some could be included in
census data as low quality rough grazing. Some areas
are only suitable for grass and are assumed to be grass.
The model does not estimate forestry.

The model was run for the year 1995 in the regions
of east Anglia and north-west England (seeFig. 1).
Crop data such as prices, seed rate, fertiliser rates,
spraying costs and extra variable costs per crop were
derived fromABC (1999). These prices were based
on the average values (corrected for inflation) for the 4
years before the model run year, i.e. 1991–1994. The
economic scenario was different prior to 1991. This
attempts to simulate farmer decision-making, which is
based on previous experience and not the prices in a
current year (which will not be known at the start of the
year). Thus, for example, a farmer will select a crop in
1995 if it has performed well (economically) in previ-
ous years. A 4-year period, although largely arbitrary,
was chosen because it was thought to be representative
of the past period that contributes to decision-making.
Differences in the length of time for price data are
unlikely to be important unless the prices for a par-
ticular crop are especially volatile, or especially poor
in the most recent year. However, when a change in
price policy occurs within this time period the data
may need to be adjusted.

The variability of a farmer’s perception has been
included in the model to better estimate the expected
distribution of cropping within a region. Convention-
ally in farm economics, the optimum cropping on a
farm is assumed to be conservative in order to smooth
out peaks in profit and loss from variable crops. This
can be optimised using techniques such as MOTAD

(Hazell and Norton, 1986), which minimise the to-
tal absolute deviation at the same time as maximising
profit. Whilst this is undoubtedly the case on an in-
dividual farm, on a collection of farms the variability
causes some crops to be grown, even though on esti-
mated profit and variability grounds they should not be
grown. Put simply, the prices and yields that a farmer
expects are different from the mean values, due to past
experience and personal prejudices. Thus, the opti-
mal decisions that farmers reach will be different. To
simulate this variability in expected net crop incomes,
due to different perceptions of prices and yields, a se-
ries of solutions have been determined with randomly
generated crop gross margins, using the coefficient of
variation derived from historical series of prices and
yields of crops. The regional cropping is thus the sum
of these different optimal cropping plans. The method
gave an improved estimate of the distribution of crop-
ping in the east Anglian region.

5. Quasi-validation

A quasi-validationof the land use model outputs
was undertaken by comparing statistically the model
results for 1995 with observed statistics provided by
the UK Ministry of Agriculture, Fisheries and Food
(MAFF, 1996). The MAFF data were based on the
annual census data that have been interpolated to the
same 5 km× 5 km resolution grid used for the model,
and were provided from MAFF by the UK Climate
Impacts Programme (UKCIP) (Iain Brown, personal
communication). The analysis is referred to as a
quasi-validation because the MAFF data are not truly
an ‘observed validation set’, but an ‘estimated’ land
use distribution, the data being interpolated to the
5 km×5 km grid from observations collected on a dif-
ferent spatial basis. In addition, the MAFF data refer
to a single year (1998) that is different from the mod-
elled baseline (1995). There may not be large differ-
ences between the land use distributions for these two
periods, but some differences are possible. The analy-
sis reported here, therefore, should only be considered
as a ‘comparison’ and not a complete validation of
the model outputs. This comparison does, however,
provide some useful information concerning the be-
haviour of the model under current conditions, which
affects the way the model results can be interpreted.
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Because the land use model generates large amounts
of output (the surface area of each of the crops con-
sidered in the analysis), it is necessary to simplify
some of these data when comparing the model and
observed distributions statistically. Therefore, the
following variables were used in the statistical analy-
sis: wheat (ha), cereals (wheat, barley and oats, ha),
grassland (permanent and rotation, ha) arable (i.e.
non-grassland, ha). The statistical comparisons be-
tween model and observed data were based on the
following tests. Before applying these tests, the data
distributions were tested for normality.

1. A visual comparison of the mapped observed and
modelled spatial distributions.

2. A simple matching coefficient was derived from
frequency tables. The coefficient is calculated
from the number of grid squares that are common
between the compared distributions (1–1, 0–0) di-
vided by the total number of grid squares in the
region. The coefficient is, thus, a measure of the de-
gree of agreement between the compared land use.

3. A comparison of the means and standard devia-
tions for the variables over the whole of the region.

4. The comparison of the means was based on (a)
the difference between the means, and (b) a paired
t-test. The pairedt-test computes the difference
between each grid square of the compared distri-
bution and tests if the average differs from 0. The
probabilities of thet-test are also determined: a
probability value of 0.001 means that there is only
a 0.1% chance that there is no difference between
the measured and computed values, i.e. there is a
99.9% chance that there is statistically significant
difference between the two. This is a test on the
regional means that compares the different dis-
tributions in a global way. A probability level of
0.001 is a severe threshold, indicating that there
is a very high degree of confidence that there is a
difference between the two means. Probabilities of
0.05 (equivalent to 5 %), however, still demonstrate
significant differences. The following discussion
is based on the probability threshold of 0.001.

5. The Pearson correlation coefficient is a measure of
the degree of association between the distributions
of the values being compared. It is calculated from
the covariance of the compared scenarios divided
by the product of the standard deviations of the two

distributions. Pearson correlation coefficients vary
between−1 and+1, indicating either negative or
positive linear relationships, respectively. A value
of 0 indicates that neither of the two distributions
can be predicted from the other using a linear
equation. A value of 1 indicates a perfect match.

6. Results and discussion

Visual comparison of the mapped results for the
modelled and observed land use distributions (see
Fig. 3) shows relationships that, generally, are good.
That is to say the spatial trends observed in the two
distributions appear to have similar patterns, and the
geographic concentration of each land use class is
located in similar places on each map. There are
also clear differences between the two regions, with
arable agriculture being more prevalent in east Anglia
compared with the north-west.

It is interesting to note fromFig. 3 that the
model produces a land use pattern that is more
spatially-distributed than the MAFF data. This is con-
sistent with a well-recognised observation that actual
land use tends to become concentrated in certain ar-
eas, reflecting the influence of neighbouring land uses
on farmer choices (e.g.White and Engelen, 1993,
1997). In some cases this can result in actual land
use distributions being significantly different from
those which might be expected from a knowledge
of the physical conditions (soils and climates). Clas-
sic geographic studies (e.g.Hägerstrand, 1968) have
shown the influence of this so-calledneighbourhood
effecton land use distributions, but how this type of
behaviour might change in the future is unknown.

A comparison of the regional means for the differ-
ent land use classes in each grid square supports the
observation of a good correspondence between mod-
elled and observed data (seeTable 3). The t-test fur-
ther corroborates this conclusion (seeTables 4 and
5), with the exception of the grassland distributions,
which show significant differences from the MAFF
data for both regions and cereals in the north-west (in-
dicated by the values 0.000 in brackets inTable 5).
Table 3also shows, however, that there are large differ-
ences in the standard deviations between the modelled
and observed distributions, implying a greater vari-
ability in land use classes in the MAFF data compared
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Fig. 3. The distribution of wheat in (a) east Anglia, and (b) the north-west for the MAFF data and the 1995 modelled baseline.

Table 3
Comparison of the regional means and the S.D. (ha) in east Anglia and the north-west region

East Anglia North-west

Wheat MAFF
cropping statistics

Wheat Modelled
(1995)

Wheat MAFF
cropping statistics

Wheat Modelled
(1995)

Mean 627 612 41 39
S.D. 444 238 101 44

Cereals MAFF
cropping statistics

Cereals modelled
(1995)

Cereals MAFF
cropping statistics

Cereals modelled
(1995)

Mean 864 881 104 72
S.D. 501 322 187 78

Grassland MAFF
cropping statistics

Grassland
modelled (1995)

Grassland MAFF
cropping statistics

Grassland
modelled (1995)

Mean 161 52 864 750
S.D. 160 145 692 545
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Table 4
Tests on the mean differences (t-test) between the baseline and the MAFF data in east Anglia

Wheat MAFF
cropping statistics

Cereal MAFF
cropping statistics

Grassland MAFF
cropping statistics

Wheat modelled (1995) 15.062 (0.332)
Cereal modelled (1995) 17.580 (0.351)
Grassland modelled (1995) −108.610 (0.000)

The number in brackets represent the level of statistical significance of the test.

Table 5
Tests on the mean differences (t-test) between the baseline and the MAFF data in the NW region

Wheat MAFF
cropping statistics

Cereal MAFF
cropping statistics

Grassland MAFF
cropping statistics

Wheat modelled (1995) −2.145 (0.567)
Cereal modelled (1995) −31.256 (0.000)
Grassland modelled (1995) −114.316 (0.000)

The number in brackets represent the level of statistical significance of the test.

Table 6
Pearson correlation coefficient between the Baseline and the MAFF data in east Anglia

Wheat MAFF
cropping statistics

Cereal MAFF
cropping statistics

Grassland MAFF
cropping statistics

Wheat modelled (1995) 0.58
Cereal modelled (1995) 0.50
Grassland modelled (1995) 0.27

with those simulated. The Pearson correlation coeffi-
cients, which are small in each case, support this ob-
servation, because the correlation depends strongly on
the standard deviation (seeTables 6 and 7). This sug-
gests, therefore, that the model is very good at the
level of regional means and at representing general
spatial trends, but is less good at representing the full
variability of land use density that is observed in the
MAFF data.

This conclusion is emphasised byFigs. 4 and 5,
which show the aggregated cropping outputs for the
entirety of each region. For east Anglia the results

Table 7
Pearson correlation coefficient between the Baseline and the MAFF data in the NW region

Wheat MAFF
cropping statistics

Cereal MAFF
cropping statistics

Grassland MAFF
cropping statistics

Wheat modelled (1995) 0.34
Cereal modelled (1995) 0.41
Grassland modelled (1995) 0.15

are largely good, although the areas of grass, potatoes
and beans are underestimated and the areas of oilseed
rape and oats are overestimated. For the north-west,
the modelled area of grass is 83% against the observed
area of 87%. Thus, the model estimates the area of
arable cropping quite well, with the exception of sugar
beet (seeFig. 5). Sugar beet, however, is a special
case. In the simulations presented here there were no
restrictions imposed on sugar beet cropping as a result
of the lack of a nearby sugar beet factory (e.g. arising
from additional transport costs). The model correctly
simulates that there is insufficient area of sugar beet



M.D.A. Rounsevell et al. / Agriculture, Ecosystems and Environment 95 (2003) 465–479 477

Fig. 4. Actual versus modelled agricultural land use in the east Anglian region in 1995.

to justify a nearby factory and thus the crop is not
profitable in the north-west region. As the model only
predicts an area of 3.2% of sugar beet, there is little
impact on the overall simulation of the other crops.
As for east Anglia, the areas of potatoes and beans are
underestimated and the area of oats is overestimated.
In this case however the area of oilseed rape is under-
estimated.

Any differences between the observed and modelled
land use distributions may either be a function of the

Fig. 5. Actual versus modelled agricultural land use in the north-west region in 1995 (note: sugar beet is modelled as if there was a local
factory in order to examine future possibilities).

land use model itself, or alternatively because of the
MAFF data interpolation procedure. It is not possible
to say which. The results of the modelling exercise
suggest, however, that the hypothesis that farmers in
the two regions are ‘profit maximisers’ is a good as-
sumption. It is, however, apparent that in attempting
to predict farmer cropping choices that neighbouring
farmers, in identical situations do not make identi-
cal choices. There are two alternative explanations for
this. One is that the farmers have different attitudes
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to risk and the second that they have different views
on the likely future profitability (yield and prices) of
crops. Both are due to the variability in yields and
prices. Thus, we believe that risk aversion is a pivotal
question in the study of the decision-making process of
the farmer (e.g.Hazell and Norton, 1986). Generally
speaking, risk aversion is revealed in the choice of crop
division and techniques through crop diversification
and the adoption of crops with low profit variability.
However, estimating the role of this parameter is fairly
difficult as crop diversification also occurs for other
reasons, such as agronomic and organisational needs.
It is, therefore, difficult to establish unequivocally if
taking this risk into account when constructing pro-
gramming models is appropriate, and further research
is required to evaluate whether modelling risk percep-
tion would be useful to the model reported here. An
alternative approach is to consider that farmers have
a personal view of the likely future value of a crop,
which differs from farmer to farmer and there is thus
more variety of choice between farmers. For example,
potato is currently a poor crop to grow and also very
risky and so, no farm model should select it. Yet some
farmers do grow potatoes. This is due to past expe-
rience of shortage years and very high prices, which
cause some farmers to have higher expectations from
potatoes than most other farmers.

A further possible explanation of the differences
between the observed and modelled crop areas is
the effect of rates of change (or time lags) in the
decision-making process. As the price of a crop
changes through time, there is not an instantaneous
response from the farmer to this new price level. It
may take several years of higher/lower prices for a
farmer to be convinced that it would be profitable to
switch to a different crop. Such an effect might be
exaggerated if the change involved a crop that was
new to an area and for which, there was no or little
collective experience within the local farming com-
munity. This situation might reflect an aversion to
risk, or the effect of existing short or long duration
capital equipment (not included in the model reported
here). As an example of the short case, a farmer with
a potato planter and harvester would be more likely
to continue growing potatoes than a farmer would be
to start growing potatoes who does not have the nec-
essary equipment. As an example of the long case, a
farmer with a grain store, but no dairy parlour, will

most probably continue to cultivate cereals, and not
change to dairy farming. The effect of long duration
capital equipment could be modelled as the probabil-
ity of a change given the pressure to change which
is the difference in the profitability of the alternative
systems. Further work would be required to develop
such approaches.

7. Conclusions

The basic hypothesis that underpins the work pre-
sented here is that farm level decisions mediate the
impact of market and policy change on land use. The
model has been developed, therefore, in considering
this basic hypothesis. Testing the performance of the
model against observed land use statistics suggests
that the approach has merits that warrant further
investigation and application. Amongst such appli-
cations are the capacity to use the model to explore
future changes in agricultural land use arising from
socio-economic and climate change. In this respect,
the model appears appropriate not only to address
short-term changes in market conditions, e.g. aris-
ing from European policy reform, but also as a tool
to analyse the implications of longer-term climatic
change, e.g. over the next 50 years. This is because
the basic concept of modelling farmer decisions as the
basis of understanding agricultural land use is unlikely
to change during this period of time. Climate change,
for example, will affect both crop yields and the types
of management constraints, such as soil workability,
that are explicitly treated by the model. In predicting
future land use, however, much greater uncertainty
exists in the values of the economic inputs to the
model, e.g. prices, to which the model (like reality) is
very sensitive. The capacity to ‘predict’ future agricul-
tural land use change will depend strongly, therefore,
on an understanding of the economic processes and
changes arising from a range of causes: policy change,
technological development, consumer preferences,
etc.

As a contribution to the understanding of land use
change, the model has important strengths in terms of
its ability to represent management and decision pro-
cesses. These approaches are based, however, on the
assumption that a certain range of land use choices
are available to farmers. This does not take account
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of potential future changes to these possible options.
Already in Europe, for example, agricultural policy
has the stated aim of encouraging diversification of
rural land use, and this policy objective might be ex-
pected to continue into the future. Models of agri-
cultural land use change need to consider, therefore,
non-agricultural land use options such as forestry, con-
servation and residential development.
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